Journal of Organometallic Chemistry, 155 (1978) C45-C46 © Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands

Preliminary communication

CYCLOTRIMERIZATION OF ACETYLENIC COMPOUNDS WITH (BENZENE)(1,3-CYCLOHEXADIENE)RUTHENIUM(0): PREPARATION OF BIS-ARENE DERIVATIVES OF RUTHENIUM HAVING DIFFERENT ARENE LIGANDS

A. LUCHERINI

Istituto di Chimica Organica Industriale, Università di Pisa, Via Risorgimento 35, 56100 Pisa (Italy)

and L. PORRI

Istituto di Chimica Industriale del Politecnico, Piazza L. da Vinci 32, 20133 Milano (Italy) (Received May 15th, 1978)

Summary

The reaction between (benzene)(1,3-cyclohexadiene)ruthenium(0) and acetylenes $RC \equiv CR$ under UV irradiation yields complexes of the formula $(C_6R_6)_2Ru$ or $(C_6R_6)Ru$, depending on the acetylene used.

It is well known that acetylenes can be cyclooligomerized in the presence of transition metal compounds. In many cases the cyclooligomerization products are formed as η -complexes with the transition metal: several arene and cyclobutadiene complexes have been produced in this way [1].

We now report the formation of some bis-areneruthenium(0) complexes via the cyclotrimerization of acetylenic compounds by (benzene)(1,3cyclohexadiene)ruthenium(0). Depending on the acetylenic compound used, the reaction can yield, bis-arene derivatives having two different arene molecules coordinated to the same ruthenium atom.

Treatment of $(C_6H_6)(C_6H_8)$ Ru (I) with an excess of an acetylenic compound (molar ratio 1/10) in n-hexane at 40°C for 1–2 days, under UV irradiation gave the bis-arene complexes II. No catalytic trimerization of the acetylenic compound was observed. UV irradiation appeared necessary for the reactions.

 $(C_{6}H_{6})(C_{6}H_{8})Ru \qquad \frac{RC \equiv CR}{UV \text{ irradiation}} \qquad \begin{pmatrix} (C_{6}H_{6})(C_{6}R_{6})Ru \\ (IIa, R = C_{6}H_{5}, \text{ yield 50\%}) \\ (IIb, R = COOCH_{3}, \text{ yield 20\%}) \\ \downarrow (C_{6}R_{6})_{2}Ru \\ (IIc, R = CH_{3}, \text{ yield 40\%}) \end{pmatrix}$

Complexes II are orange-red diamagnetic compounds, which were characterized by elemental analysis, IR, ¹H NMR and mass spectra. IIa and IIb are the first examples of bis-areneruthenium(0) complexes having two different arenes coordinated to the same Ru atom; IIc is the well-known bis(hexamethy benzene)ruthenium(0) [2].

The ¹H NMR spectra of IIa and IIb at 35°C show a single peak due to the benzene protons (Table 1) which indicates that in these complexes the

TABLE 1

Compound	Benzene resonances	Arene resonances	
Ru(C6 H6)[C6 (C6 H5)6]b	4.90(s)	from 2.50 to 3.40	
Ru(C ₆ H ₆)[C ₆ (COOCH ₃) ₆] ^c	4.37(s)	6.20(s), 6.37(s), 6.42(s)	

^αProton chemical shifts (τ, ppm) measured at MHz relative to internal TMS. ^bIn CDCl₃ at ca. 35°C. ^cIn CD₃COCD₃ at ca. 35°C.

benzene ring is η^6 -bonded to the ruthenium atom. From the spectra it appears that the substituted benzene is η^4 -bonded in both complexes. In the case of IIa this has been confirmed by determination of the molecular structure by single crystal X-ray examination [3].

The reaction of I with phenylacetylene and 2-butyne-1,4-diol under UV irradiation was also examined. From phenylacetylene a product of the formula $\operatorname{Ru}[C_6H_3(C_6H_5)_3]_2$ was obtained, which was difficult to purify, presumably because several isomers were present. From butyne-1,4-diol an insoluble product was obtained, which could not be purified and which was tentatively assigned the formula $\operatorname{Ru}(C_6H_6)[C_6(CH_2OH)_6]$ on the basis of elemental analysis. The reaction of I with acetylene was also examined, no pure product was isolated.

No reaction was observed between I and several substituted benzenes under UV irradiation at temperatures up to ca. 100°C.

The reaction of I with an acetylene RC=CR, under UV irradiation first yields the complex $(C_6H_6)(C_6R_6)Ru$, which, depending on the acetylenic compound used, can further react to give $(C_6R_6)_2Ru$. Since I can be easily obtained [4], the reaction offers a convenient route to new bis-arene derivatives of ruthenium(0).

Acknowledgement

This work was carried out with financial support from Consiglio Nazionale delle Ricerche, Rome.

References

- 1 L.P. Yur'eva, Russ. Chem. Rev. 43 (1974) 48 and references therein.
- 2 E.O. Fischer and C. Elschenbroich, Chem. Ber., 103 (1970) 162.
- 3 A. Immirzi (Istituto di Chimica delle Macromolecole, Via A. Corti 12, Milano, Italy) unpublished results.
- 4 P. Pertici, G. Vitulli and L. Porri, Chem. Commun., (1975) 846.

C46